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Abstract

The high overhead of generic protocols like TCP/IP pro-
vides strong motivation for the development of a better pro-
tocol architecture for cluster-based parallel computers. Re-
configurable computing has a unique opportunity to con-
tribute hardware level protocol acceleration while retaining
the flexibility to adapt to changing needs. Specifically, ap-
plications on a cluster have various quality of service needs.
In addition, these applications typically run for a long time
relative to the reconfiguration time of an FPGA. Thus, it is
possible to provide application-specific protocol processing
to improve performance and reduce space utilization. Re-
ducing space utilization permits the use of a greater portion
of the FPGA for other application-specific processing.

This paper focuses on work to create a set of parame-
terizable components that can be put together as needed
to obtain a customized protocol for each application. To
study the feasibility of such an architecture, hardware com-
ponents were built that can be stitched together as needed
to provide the required functionality. Feasibility is demon-
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strated using four different protocol configurations, namely:
(1) unreliable packet transfer; (2) reliable, unordered mes-
sage transfer without duplicate elimination; (3) reliable, un-
ordered message transfer with duplicate elimination; and
(4) reliable, ordered message transfer with duplicate elimi-
nation. The different configurations illustrate trade-offs be-
tween chip space and functionality.

KEYWORDS: Intelligent Network Interface Card, recon-
figurable computing, networking protocols, cluster comput-
ing

1. Introduction

Reconfigurable Computing (RC), like low-cost clusters,
is an alternative technology to traditional high-performance
computing systems [7]. For a number of years researchers
have demonstrated that hardware circuits realized in RC
logic are very effective at accelerating specific applications.
In an effort to exploit RC technology and broaden its gen-
eral usefulness, the Adaptable Computing Cluster (ACC)
project focused on an extension to the Beowulf (commodity
cluster, open source software) architecture that places re-
configurable resources (FPGA) in the network data path of
every node. In other words, the ACC integrates RC and a
commodity NIC, forming an Intelligent Network Interface
Card (INIC). This has been shown to have a significant im-
pact on performance and is cost-effective for several classes
of applications [20, 22].

The INIC offers several modes of operation. With a pass-
through configuration, the INIC can operate as a standard
high-speed NIC while the RC resources are free to be used
as a standard RC peripheral card. Another mode, explored
in several papers [19, 21], uses the INIC as a combined com-



putation and communication processor where the data com-
ing to and from the network is operated on in transit. The
third mode has the INIC assisting communication by of-
floading protocol processing. This work explores the third
mode: the INIC as a communication assist where the en-
tire communication protocol is configured and moved to the
INIC.

Ideally, one might consider putting TCP/IP or another
complete communication protocol stack on the INIC. How-
ever, the dedicated microSPARC is much too slow for Gi-
gabit and 10 Gigabit line speeds and to implement TCP in
reconfigurable computing would swamp the largest FPGA
chips available. Instead, we take another approach: in this
paper we propose aconfigurableprotocol suite. By care-
fully defining interfaces and building features as indepen-
dent components, a programmer can simply identify the de-
sired features of their customized protocol. The appropri-
ate components are then stitched together, synthesized, and
downloaded to the INIC’s FPGAs. Since reprogramming
times are very fast (milliseconds) and applications in Be-
owulf clusters often receive dedicated nodes, this is a viable
technique for deploying application-tuned communication
protocols, thus enabling a trade-off between RC resources
and communication features.

Most Beowulf programmers implicitly choose TCP/IP as
an underlying communication protocol. TCP/IP offers a re-
liable, in-order message transfer service and although most
parallel algorithms are built around this assumption, it is
not necessarily always required. For example, many algo-
rithms that redistribute data do not care what order the data
arrives so long as it is reliably delivered. Likewise, a com-
mon discrete event simulation code does not rely on order
so long as all the messages arrive during their appropriate
quantum. Certainrendezvoustype communications implic-
itly force the synchronization, effectively ordering the mes-
sages. Further, many commodity clusters are deployed with
network switches which guarantee in-order delivery, mak-
ing the a software re-ordering component redundant. Per-
haps more surprisingly, there are several cases where 100%
reliable services is not necessary for correctness. For ex-
ample, many iterative numerical algorithms are very robust
and most network switches very reliable. In such a situation,
an iterative algorithm can be programmed to simply reuse a
value from the previous iteration on the rare occurrence of a
lost update. Because it is robust, the algorithm can converge
in nearly the same number of iterations but — because of the
performance gain of using unreliable messages — there is
an overall performance gain for the application.

There are several performance reasons for wanting a
communication protocol in the network interface card.
First, any protocol processing performed by the card is com-
putation that the host does not have to do. In a message-
passing program, a very common technique is to overlap

the communication with the computation; reducing the CPU
load on the communication part improves the overall perfor-
mance. In addition, because the card is aware of the proto-
col, it can interact with the network without host interven-
tion. This has two important consequences. First, it reduces
the latency of the overall protocol because short messages
such as an ACK do not have to cross the peripheral bus
twice. Second, the host does not have to service an interrupt
or perform a context switch — thus saving several opera-
tions that contribute factors to the latency of the response
and are pure overhead. While simple unicast messages
are demonstrated in this paper, the architecture is generic
enough that it is easily extended to support more complex,
collective communications such as barrier synchronization
[20], multicast, and reductions [11].

The advantage that reconfigurable computing brings to
this effort is a high-performance, yet configurable, comput-
ing fabric. Traditional processors frequently have trouble
providing adequate processing power for high rate protocol
processing, particularly in the power constrained embedded
environment of a network interface card[18]. However, con-
figurability is still required as protocols have a tendency to
change over time[2]. More importantly, with reconfigurable
hardware on the network interface, it becomes possible to
customize the protocol based on the current application.
This can even be extended to include application specific
processing with the protocol.

The work described here concentrates on using the INIC
as a communication assist for Beowulf-class architectures
running message-passing parallel codes with modern, high-
speed networking such as Gigabit Ethernet. The design of
a component-based, configurable network protocol for the
INIC is described. Several modules have been implemented
to demonstrate that the architecture is feasible. An area
analysis is included to illustrate the impact of customizing
the protocol to meet the specific needs of an application.
The goal of the work presented here is to establish the fea-
sibility of such an architecture. Unfortunately, appropriate
hardware to do complete performance testing is unavailable;
however, our prototype board does firmly establish the fea-
sibility of this approach and the performance measured is
competitive.

The rest of this paper is organized as follows. Insec-
tion 2 the general problem of building a communication as-
sist for an INIC is described. A description of the protocol
is then presented insection 3followed by a description of
the hardware design insection 4. In section 5, a preliminary
evaluation that compares the size of each configuration is
presented. Insection 6some of the related work are dis-
cussed. Finally, conclusions are presented insection 7.
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2. Communications Assist

Traditional Beowulf clusters use general-purpose proto-
cols like TCP/IP for networking. While it is easy to use, it
has disadvantages that limit its usability. Generic protocols
do not consider the architecture of the network or the needs
of the application. Even in commodity protocols, there is a
recognized need for different protocols for different appli-
cations. UDP and RTP complement TCP in an attempt to
satisfy the need for a generic protocol for each general class
of applications.

Since TCP/IP is often used in Beowulf-style clusters, a
closer look at its drawbacks in such an environment proves
useful. Most of the network switches used in Beowulf clus-
ters provide ordered delivery of packets and have a very
low drop rate. Also, unlike the Internet, the bandwidth of
the network at hand is known in most clusters. Features
of TCP implementations designed to accommodate these
differences in the Internet limit its performance on clus-
ters. Examples include delayed acknowledgments (requir-
ing larger windows), slow start, and congestion avoidance.

Figure 1(a) shows the data path between the application
and the high-speed network in a computer using general-
purpose protocols. Note that every packet (data and ack)
has to move across the relatively slow PCI bus and every
such transfer involves interrupt processing and most likely
context switches. With the increasing network speeds and
decreasing latency of newer commodity networks, the num-
ber of context switches will increase, causing considerable
overhead. In order to reduce the number of bus transactions
and to achieve maximum performance, an ideal solution is
to have a hardwired protocol on the NIC. However, there
are numerous competing protocols and fixing one general-
purpose protocol is inconsistent with commodity general-
purpose hardware. It eliminates the benefits of commodity,
large-scale production.

An INIC directly addresses the desire for a on-NIC pro-
tocol without losing the advantages of commodity proces-
sors. In the communications assist mode of operation, the
entire communication protocol is migrated to the INIC. As
shown inFigure 1(b) the host is never interrupted when re-
ceiving ack packets and only data is transferred over the PCI
bus. Transactions between the processor and the NIC now
occur at the message level, and parallel programs are of-
ten written with a message-passing library. Note that while
presently there is no library in our setup, there is nothing
preventing the use of one. This also allows the INIC to
address another limitation of commodity networks: small
packets. Small packets can result from a limited network
MTU or from various types of parallel communications pat-
terns. Whatever their source, in a commodity system, small
packets drastically increase the packet processing overhead
by increasing the number of interrupts and bus transactions.
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Figure 1. (a) Traditional data path between ap-
plication and network (b) proposed path between
an application and the network

By interfacing the INIC at the library level, the overall num-
ber of bus crossings can be drastically reduced.

The INIC, with its RC resources, offers a novel way to
address the problems with generic protocols. The RC com-
ponent of the INIC allows arbitrary hardware designs to be
realized on the NIC. This, in turn, makes high-speed NIC-
based protocols feasible. With non-RC hardware, each new
protocol requires a new design, verification, implementa-
tion, and deployment cycle. To remain a commodity, these
cycles sometimes take years to complete since compatibil-
ity is necessary. However, the INIC can rapidly deploy an
application-specific protocol for a dedicated cluster. Since
resources used in the protocol are not available to the ap-
plication, it is important to minimize the resources used on
a per application basis. Thus, the key trade-off in the com-
munication assist problem is: protocol functionality versus
CLB (LUT and FF) resources required.

The proposed approach uses components that can be
glued together to form a new network protocol. A specific
assortment of components can be integrated together based
on the required functionality, or space constraints. Desired
options might include (1) reliable delivery, (2) ordered de-
livery, (3) duplicate elimination, and (4) rate control, among
others.

To study the trade-off between space and functionality,
four different protocol configurations were assessed:
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1. Unordered, unreliable delivery;

2. Reliable, unordered without duplicate elimination;

3. Reliable, unordered with duplicate elimination;

4. Reliable, ordered delivery.

These are presented in increasing order of functionality and
increasing order of chip space.

3. Protocol Description

In order to implement the protocol in hardware, a very
simple, yet fully functional protocol was designed. The
packet format employed is shown inFigure 2. One header
format is used for both data and ack packets to ease the pro-
cess of assembling and disassembling the packet. As indi-
cated by the figure, packets are built directly on top of Ether-
net packets. In the current format, the length is provided in
a nine bit field indicating the number of 32 bit words trans-
fered. This could easily be extended to an eleven bit field
indicating the number of bytes transfered; however, the ap-
plications utilizing this protocol, thus far, transfer data in
increments of words. This is an illustration of how the pro-
tocol can be customized on a per application basis.

A four bit info field contains information about the the
packet type. The packet can optionally contain an acknowl-
edgment, data, or both. Two additional flags are reserved
to indicate the last packet in a message and packets that are
retransmits. The next field shown inFigure 2is a 24 bit se-
quence number. The sequence number is a packet number
(unlike the TCP sequence number) to simplify the ability to
perform selective acks and nacks. The next two 4 bit fields
include the source and destination nodes. The cluster used
in this research project has only 16 nodes, so only four bit
fields are needed. In larger clusters, the packet format could
easily be changed. For example, the sequence number need
not be 24 bits. In cluster networks, packets are never “lost
in the network”, so the sequence number only needs to be
large enough to handle the number of outstanding packets.
An eight bit sequence number would be adequate for many

systems. This would leave 12 bits each for the source and
destination supporting 4096 nodes. Alternatively, the proto-
col format could be adapted to larger systems with a simple
change to the hardware components.

The ack mechanism is also relatively simple. The first
ack field indicates the last consecutively received packet.
The validity of this field is indicated by theack bit in the
packet header. The second ack field is used to indicate
which packets have been received past the last consecutively
received packet. This is a 32 bit mask that uses a 0 to de-
note a packet that has not been received and a 1 to indicate
a packet that has been received. Zeros that occur before a
one indicate a packet that has been lost. Acks are included
with each data packet that is transmitted (assuming packets
have been received from the destination node). If packets
are received from a node but no data packets are sent to that
node, then a forced ack may be required. The ack building
mechanism keeps track of the value of the last packet ac-
knowledged. When a packet is received that is more than
thresholdpackets away from the last packet acknowledged,
an acknowledgment is forced.

On the transmitting side, only a certain number of pack-
ets are allowed to be outstanding without an acknowledg-
ment. This value is usually at least2× threshold. Packet
transmission stops when the outstanding packet limit is
reached. A timer tracks the time between packets being sent
to the host in question. When this timer reaches a thresh-
old, the last outstanding packet is retransmitted. This last
packet will force an acknowledgment from the receiver us-
ing one of two mechanisms. Either the receiver will recog-
nize the retransmitted packet as one that has been acknowl-
edged, and will send another acknowledgment, or the dif-
ference in the last acknowledged packet and the transmitted
packet will exceedthreshold. The packet generator recog-
nizes messages that have been completed and disables the
timer for those destinations. The simple semantics of this
protocol make it easy to implement as a set of modular com-
ponents in hardware. The specific components that achieve
this functionality are described in the following section.

4. Hardware Design

The main design objective is to keep the protocol as mod-
ular as possible. Thus, it is important to build a collection
of components that interact with each other in a very spe-
cific way. The granularity must be maintained such that, at
most, one function is provided by each component. In some
cases, a single function is broken into a collection of com-
ponents to maximize flexibility. This enables a change in
the implementation of one functionality without a change to
or rewrite of the entire protocol. Thus, there is also the im-
plication that multiple implementations of a single function-
ality might be available to choose from based on the appli-
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cations needs. Finally, each component takes parameters to
increase the flexibility in a particular configuration.Figure 3
shows the design of a reliable, ordered, rate-controlled1 pro-
tocol using these components. The functionality and inter-
face of each of the various components is explained in the
following subsections.

4.1. Standard Interfaces

If a design is to permit component substitution, it is im-
portant to have a well defined interface between all of the
components. The interface is defined in two parts. First,
all of the components communicate using FIFOs. These FI-
FOs provide for one interface standard across the entire de-
sign and the depths of these FIFOs can be parameterized as
needed. Second, the communication between components
uses a very specific format. If a particular port from a com-
ponent is not used, a stub is connected to that port to gener-
ate (or consume) the appropriate data.

4.2. Packet Format processing

The xmit andsplit packetcomponents are the only two
components that handle the format of the packet. Thexmit
component is responsible for building a complete packet
from the control information it receives. These packets are
injected into the network based on rate control information.
There are two different types of packets, data packets and
acknowledgment packets, that are distinguished by a bit in
the packet header. Ack packets are used when acknowl-
edgments are forced. Otherwise, acks are a component of
the packet header. Thesplit packetcomponent is the peer
of xmit on the receive side. This component separates the
packet into header and data components. These parts ab-
stract the packet format from the rest of the design. This
ensures that only these components need to be modified to
implement a change in the packet format. The interface for
thexmit part includes

1. Packet interface to provide information about the next
packet to be sent (pinfo)

2. Ack interface to provide acknowledgment informa-
tion for the next packet (ack info)

3. RAM interface to retrieve the data from memory
(ram data)

4. Output interface to send the packet to the network
(pkt dout)

The packet interface provides the starting address of
data, length of the data, and the destination node for the

1Rate control has not been implemented yet

data. The ack interface provides both the base packet num-
ber being acknowledged and a bit pattern indicating the
packets beyond that base that have been received. This in-
terface also includes a destination node and an extra bit to
force the transmission of an ack packet (as opposed to plac-
ing the ack information in the outgoing packet). The RAM
interface is provided for thexmit unit to retrieve packet data
from memory. Finally, thexmit component can be param-
eterized with the packet size and the number of nodes sup-
ported.

The interface for the complementary component,split
packet, includes

1. Input interface to receive the packet from the network

2. Header interface to pass the packet header to the de-
sign

3. Data interface to pass the packet data to the design

The split packetcomponent is the demultiplexor part that
splits the received packet into its components. Header in-
formation is output on one port while data is output on the
other. Other components in the receive processing path
require this information to determine how to handle the
packet.

4.3. Packet Generation

Thegenpcomponent is responsible for generating packet
numbers when data is ready to be sent or when a particular
packet needs to be retransmitted. It interfaces with the ap-
plication, keeps track of the address where the application
writes the packet data, monitors received acks, and provides
packet information to thexmit component. The details of
generating the next packet depend on details of the proto-
col. Factors that are decided by this component include the
number of outstanding packets without acks and the amount
of data contained in a packet. The interface exported by the
genpcomponent to the other components is:

1. Ack interface to receive information from incoming
packets (ack info)

2. Application interface to track the status of the packet
buffer in RAM

3. Packet interface to provide the next packet informa-
tion to thexmit component

4. Timer interface to receive timeout information

4.4. Building Acknowledgments

The build ackscomponent processes information from
received packet headers to build acknowledgment informa-
tion. It also has a port to receive information from the
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Figure 3. Design of a reliable, ordered, rate-controlled protocol

genpcomponent to inform it about the next packet that is
being sent. This allows thebuild ackscomponent to pro-
vide the correct ack information for the outgoing packet. It
also tracks which nodes have been acknowledged recently
so that forced acknowledgments can be sent if necessary.
If a forced acknowledgment is needed, it injects extra ac-
knowledgment into the stream and raises theforcedackbit
to notify thexmit component an explicit ack packet is nec-
essary. The ports for this component include

1. Packet generation interface to obtain the next packet
to be sent

2. Received packet header interface (pinfo)

3. Ack information interface to provide ack data to the
xmit component (ack info, ackdata, forcedack)

4.5. Timer

Thetimer component is responsible for making sure that
acknowledgments are received for all of the transmitted
packets. The timer part monitors outgoing packet num-
bers and resets the timer for a given destination as soon
as a packet is sent to that destination. If the ack informa-
tion for that packet is received before the timer reaches a
programmable threshold, thegenpcomponent disables the

timer. If acks are not received before the timer expires, the
genpcomponent is notified with a signal indicating which
timer expired. Thegenpcomponent then retransmits the
appropriate packet. The interface to thetimer part includes

1. Next packet interface to indicate the next outgoing
packet

2. Disable timer interface to allow thegenpcomponent
to selectively disable timers

3. Timer expiration interface to notify thegenpcompo-
nent of expired timers

In addition, parameters to thetimer component include the
number of processors in the cluster (thus, the number of
timers) and the timeout threshold.

4.6. Duplicate Elimination

The dup find component is used on the receiving side
of the protocol to find packets with duplicate packet num-
bers. Packets with duplicate packet numbers occur when
acknowledgments are lost. This part communicates with
thedrop pkt part to drop the packet in such a scenario. This
component makes sure that only the data is dropped in case
of a duplicate packet. The packet header is passed on to the
build ackscomponent to make sure that an ack is sent to the
source node to inform it that the packet has been received.
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4.7. Packet Ordering

The order pkts component helps order the incoming
packets. In the configuration shown above, theorder pkts
part uses a go-back-N mechanism. This part makes sure
that only packets with consecutive packet numbers are
passed and all others are dropped. In this case, both the
data and the packet info are dropped so that acks will spec-
ify that packets after the last consecutive received packet
were lost. These packets will be retransmitted by the sender.
A go-back-N mechanism was chosen for simplicity on the
prototype INIC. A more modern INIC could easily buffer
packets received with nonconsecutive numbers and pass that
header information to thebuild acks component. Thus,
only the lost data would need to be retransmitted. Note
that dup find and order packetscomponents do not com-
municate with each other. The header information from the
split packetcomponent is duplicated so that thedup elim
andorder packetscan compute in parallel. Either of these
components can cause a packet to be dropped.

4.8. Support Components

A number of components are needed for minor sup-
port functions. For example, thercv pkt component pro-
vides a clean interface to the NIC by handling the oddi-
ties of hardware interacting with a PCI NIC. In turn, the
bad pkt filter drops packets that contain some form of error
as indicated by the NIC status word. Finally, thedrop pkt
component takes information from the duplicate elimination
and packet ordering components to determine which good
packets should be passed to the application.

4.9. Rate Control

Rate control is one of the features that is very difficult
to implement in software. With the aid of the rate control
component on the INIC, it will be possible to implement cy-
cle accurate rate control and quality of service. Specifically,
proper rate control implies that only one packet would be
sent for eachM microseconds. This is virtually impossible
to achieve in software because the software timer granular-
ity cannot (reasonably) be set at a microsecond granularity.
Software solutions approximate rate control by sending a
burst ofP packets everyP × M microseconds. This in-
troduces significant difficulties into the implementation of
proper rate controlled protocols. Hardware timers can sup-
port a much finer granularity and allow much more direct
rate controls. Presently this component has not been imple-
mented.

4.10. Receive side host interface

Transfer of data from the INIC to the host at the re-
ceive side can be configured to be either polling or in-
terrupt driven. For performance reasons, our designs use
an interrupt driven mechanism. Also the protocol can be
configured at runtime with a ‘rcvchunksize’ parameter.
This parameter specifies the number of bytes that should
be received by the protocol before interrupting the host.
The protocol takes care of pooling multiple receives until
‘rcv chunksize’ bytes of data is received and then it gener-
ates an interrupt. The ability to provide a custom protocol
implementation on a per application basis provides the abil-
ity to customize interrupt mitigation to match the needs of
an application. Thus, a given application might choose to
have multiple interrupt mitigation techniques that could be
based on such things as packet size, packet types (if multiple
packet types were provided), or source of the packet.

4.11. Levels of Abstraction

At a higher level of abstraction, components can be
grouped together. For example, inFigure 3block B1 rep-
resents the set of components responsible for the flow con-
trol portion of the protocol. The entire block B1 can be
replaced to get an entirely different flow control algorithm.
Fine tuning of a particular flow control mechanism can be
done by tweaking the parameters of the individual compo-
nents. Similarly block C represents the components that re-
ceive a packet, buffer them, check for transmission errors
and disassemble the packets. Finally, block A provides for
the formation of packets and the provision of those pack-
ets to the network interface at a controlled rate. For simple
changes to a protocol, many of the components blocks can
be reused. For example, only blocks A and C need to be
changed in case of a change in the packet format.

5. Evaluation

Each of the protocols evaluated were tested on a proto-
type Intelligent Network Interface (INIC). The experimen-
tal setup consists of the adaptable computing cluster (a Be-
owulf cluster with an INIC on each of the nodes). The pro-
totype INIC used was a PCI-bus ACE2 card. As shown in
Figure 4, the ACE2 card contains two Xilinx XC4085XLA
FPGAs, a microSPARC chip, and a Gigabit Ethernet card.
The Gigabit Ethernet card sits on the PCI Mezzanine Con-
nector (PMC). One PLX9080 provides a bridge between the
host PCI and the local I960 bus. A second PLX9080 pro-
vides a bridge to the local PCI bus.

This platform is an experimental prototype used in our
ACC project. As such, it has a number of weaknesses that
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card

make it generally uncompetitive as a high-performance net-
work interface. Thus, the primary concern here is to show
feasibility: a configurable network protocol can be realized
on an INIC. Secondary concerns include flexibility and re-
source trade-offs.

Each of the protocol components were implemented as
VHDL entities. Four different configurations were put to-
gether as shown inFigure 5. Components in configuration
1 implement a simple unreliable packet transfer protocol.
The only component that was specifically designed for this
protocol is the packet generator. Unreliable packet genera-
tion is a stub that implements no flow control. Packets are
generated as soon as there is enough data and sent pack-
ets are not monitored. There are no acks generated in such
a protocol. In configuration 2, the components implement
a reliable, unordered message transfer protocol without the
elimination of duplicate packets. Such protocols are appro-
priate when reliability is necessary but the order of packets
(and packet redundancy) do not matter. As an example, this
type of protocol was used in [19] at the core of a matrix
transpose for a 2D-FFT. The third configuration is a reli-
able, unordered message transfer protocol with the elimi-
nation of duplicate packets. Note that the entire blocks A
and C are shared by each of the above protocols. In config-
uration 4, a complete reliable, ordered delivery protocol is
implemented. Note that in this configuration blocks A, B1
and C are reused.

In the following subsections we discuss the feasibility
and benefits of this architecture. For the sake of complete-
ness we also discuss the performance of the INIC in latency
and bandwidth tests.

5.1. Feasibility and FPGA Resource Usage

In Figure 6, the pie diagrams show the percentage of chip
space occupied by each of the configurations with respect to
two XC4085XLA chips.Table 1shows the different func-
tionalities provided and CLB space consumed by each of
the protocol configurations.

(a) Configuration CONF1

(b) Configuration CONF2

(c) Configuration CONF3

(d) Configuration CONF4

Figure 6. Flip flops (FFs) and look-up tables
(LUTs) consumed by the four protocol configu-
rations
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unordered transfer with duplicate elimination (CONF3) (d) Configuration 4: reliable ordered transfer with
duplicate elimination (CONF4)

Table 1. A comparison of space and functionality for the various protocol configurations
Protocol Reliable Ordered Dup elim Num of Percentage of Num of Percentage of
Config Yes/No Yes/No Yes/No FlipFlops FlipFlops 4 LUTs 4 LUTs
CONF1 No No No 1643 13.10 % 1977 15.76 %
CONF2 Yes No No 2165 17.26 % 3380 26.95 %
CONF3 Yes No Yes 2534 20.20 % 3784 30.15 %
CONF4 Yes Yes Yes 2650 21.13 % 3933 31.14 %
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5.2. Processor Resource Usage

One of the primary benefits of the INIC, as discussed in
previous sections is that it reduces the load on the proces-
sor. Since the entire communication protocol is migrated to
the INIC, the time spent by the processor in protocol pro-
cessing should be minimal.Figure 7is a plot of the average
processor time usage of UDP, TCP, MPI and INIC on both
the send and receive side. In the case of UDP and INIC,
packets of size 1408 bytes were used. The results were cal-
culated over a 100MB data transfer. In the case of the INIC,
an unreliable ordered delivery protocol was used. Real time
is the total time taken by the program to complete. User
time is the time spent by the program in user mode, which
would include the time taken to process user code and any
library processing done (in the case of MPI). System time
includes the time taken for processing system calls in ker-
nel mode. Real time would naturally include System time
and User time. It would also include time taken in context
switches and interrupts and wait times (when the processor
is idle). Since the interface between the host and the INIC
is the same for all protocols, we can safely assume that the
System and User times will be almost the same for any INIC
protocol.

FromFigure 7, we can see that the system and user time
taken in the case of the INIC protocol is much less when
compared to the other protocols. Also note that in the case
of user time, the INIC takes almost no time. This is because
the user program just spends time reading a bunch of reg-
isters and starting DMA transfers. The system time would
be the time taken by the device driver. Also note that even
though the INIC takes less system and user time, it takes
more real time. This is due to the limitations of the proto-
type INIC. This time is spent idle by the processor while
waiting for the INIC to finish transfers or receives. This ex-
tra processor time is available for other operations. From
Figure 7, we can see that even though the prototype INIC
does not show a win in performance2 , the architectural ben-
efits are clear.

In Figure 8, we can see the number of interrupts gener-
ated in the send and receive side. It can be seen that the INIC
reduces the number of interrupts by a great deal. This is be-
cause host-INIC transfers are at the message level and not
packet level. Each such interrupt would potentially cause
a context switch. This is one of the architectural benefits
of the INIC. Moreover, in the case of the receive side, the
protocol generates an interrupt every time the received data
has reached a threshold. A different method would check
the INIC to see if more data is available once the data for
the first interrupt is processed. In such a method, if a huge
transfer is made, multiple interrupts will be pooled to a sin-
gle interrupt, still reducing the number of interrupts.

2latency and bandwidth

5.3. Performance — Latency and Bandwidth

Even though the prototype INIC is not a good platform
for performance study, for the sake of completeness we dis-
cuss the latency and bandwidth performance of the INIC
briefly.

In Figure 9, we show the latency and bandwidth perfor-
mance of the INIC compared to other protocols. The poor
performance is due to some of the problems with the pro-
totype INIC shown inFigure 4. Every packet has to cross
multiple busses in prototype INIC which contributes to la-
tency. Every packet transmitted has to cross the shared local
I960 bus (32 bit 33 MHz — 132MBps) four times. This ef-
fectively limits the bandwidth that can be attained with this
prototype to 264 Mbps when there is a transfer in both di-
rections. Moreover, cycles are lost in bus arbitration further
reducing performance. Finally, a bug with the media access
controller forces control logic restarts often, costing cycles
every now and then. Also, note that the performance re-
sults were obtained with the card running at its maximum
clocking capacity of 33 MHz. In our second prototype[2],
these issues have been addressed and we expect much better
performance results.

6. Related Work

With the increasing popularity of Beowulf-style clus-
ter computers, numerous efforts have been made to en-
hance their architecture. Both high-performance network
interfaces[3, 5] and lighter weight protocols[6, 23, 24] at-
tempt to stay within the commodity framework of Beowulf
Clusters, but they fail to eliminate all of the protocol over-
head on the host. Since work such as the LogP model [13]
indicate that the reduction of protocol overhead is extremely
important, all protocol processing should be offloaded onto
the NIC.

Some modern high-performance network interfaces pro-
vide these protocol processing features as well as some
other non-trivial computing capabilities [3, 15, 1, 16]. For
example, Myrinet provides a LANai processor ranging up
to 200MHz[3] and even commodity network cards, like
those using the Alteon Tigon chipsets, have begun to add
embedded processors[17]. In [4], the authors show that
implementing non trivial network operations like collec-
tive communications on such hardware improves the per-
formance significantly. Unlike other efforts where the
sequential embedded processor limits protocol processing
performance[17, 18, 1], the INIC distinguishes itself by pro-
viding abundant computing power and allowing the remain-
ing reconfigurable resources to be used for computation.

Researchers have also focused on custom ASIC’s in the
network interface [10] to accelerate protocol processing. A
similar approach to ours has been studied extensively over
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Figure 7. Processor time usage on send and receive of various protocols
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the last several years by researchers and Carnegie Mellon.
Like our proposal, the nectar system [1] has identified the
importance of moving protocol processing across the sys-
tem bus and into the network interface. However, nectar is
implemented with ASICs which arefixedhardware circuits.
While ASICs have a larger capacity and could theoretically
support all the usual network-level features, there is no way
to introduce unanticipated, desirable features without an ex-
pensive re-engineering of the chip. Also, there is no way to
introduce application-specific computations.

Other work has focused on the use of FPGAs in network
interfaces. These include such things as IPSec acceleration
on the network interface[2], the acceleration of network in-
trusion detection[9], and the acceleration of specific appli-
cations on a cluster[19]. In addition, FPGAs are commonly
used in networking. A few examples include [14, 8, 12] and
numerous others. This paper contributes a discussion of the
capabilities of reconfigurable computing as an application
specific protocol processor.

7. Conclusion

This paper presents a configurable architecture for proto-
col acceleration in cluster computers. Such an architecture
provides excellent flexibility for cluster network interfaces.
Hardware protocol options can be configured on a per ap-
plication basis to maximize protocol performance and min-
imize the area requirements. This leaves as much hardware
as possible available for application acceleration.

The goal of this paper was to demonstrate the feasibility
and flexibility of a reconfigurable computing based commu-
nication architecture. The key to feasibility and flexibility
is the ability to modularize a communications protocol and
selectively assemble those modules to form specialized pro-
tocols. Future work will focus on building a next generation
prototype and analyzing the performance advantages of the
various protocol configurations.
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